New Drug Delivery System Targets Spinal Cord Injuries
A University of Arkansas biomedical engineering researcher has been awarded a grant to improve treatments for spinal cord injuries by developing a new drug delivery method using stem cells.
Young Hye Song, assistant professor of biomedical engineering, was awarded $100,000 from the PhRMA Foundation to pursue her work on a hydrogel that houses stem cells inside a nerve matrix, allowing the cells to live longer inside the body so they can spend more time healing a damaged spinal cord.
“Hydrogels are water-swollen gels,” she said. “It’s like Jell-O, but instead of sugar and food coloring, it contains the extracellular tissue matrix components found in your body.” Previous studies have largely focused on placing cells directly into injury sites without the matrix to house them, Song said.
“Lots of cell transplantation therapies have been studied in the context of spinal cord repair, but because they are transplanted directly into a lesion site, the cells don’t survive very well in that environment,” she said. “By embedding them in the matrix hydrogels, the cells survive better and they can perform their regenerative actions for longer.”
Song’s drug delivery platform would allow for both the healing of damaged spinal cord tissue and the regeneration of axons by providing proteins to entice those cells to grow back.
Spinal cord injuries often result in significant impairments to daily life activities, and current treatment strategies focus on managing the condition versus healing it.
“The current strategies are mostly just pain managing — they’re palliative in nature,” she said. “The goal is for this platform to be more effective than what’s currently available in the clinic, moving us one step closer to actual functional recovery.”
Song said her proposed treatment has several advantages.
Delivering cells inside the hydrogel will prolong their survival and functionality, she said. The treatment is also designed to minimize pain for recipients.
“Because this is an injectable hydrogel, it can be delivered in a minimally invasive manner, which is easier on the individuals receiving the treatment” Song said. “The hydrogel synthesis also does not require a lot of harsh chemicals, so there won’t be cytotoxic side effects, meaning it will also be easier on the stem cells. Stem cells also secrete factors that promote cellular regeneration, so the hope is this won’t need repeated administrations.”
Song said the platform has implications beyond spinal cord injuries, as well.
“Anybody with a debilitating neurological injury could ultimately benefit from this work,” she said. “This platform can be tuned depending on the specific disease or injury, so it can potentially be applied to a lot of pathological or traumatic injuries, such as traumatic brain injuries or cartilage lesions.”
Raj Rao, professor and department head of biomedical engineering, praised Song’s work.
“I am extremely proud of Dr. Song for receiving this award to recreate key components of the microenvironment that surround our cells as part of a neural engineering approach to address spinal cord repair,” he said. “Receipt of this grant demonstrates Dr. Song’s commitment to developing novel patient-inspired translational solutions that has implications for debilitating neurological and neurodegenerative disorders.”
You must be logged in to post a comment.